Java 排序算法 — 归并排序

出处:https://github.com/iTimeTraveler/SortAlgorithms


归并排序是建立在归并操作上的一种有效的排序算法,1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。

1、基本思想

归并排序算法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。

这个图很有概括性,来自维基

2、算法描述

归并排序可通过两种方式实现:

  • 自上而下的递归
  • 自下而上的迭代

一、递归法(假设序列共有n个元素):

①. 将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素;
②. 将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素;
③. 重复步骤②,直到所有元素排序完毕。

二、迭代法

①. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
②. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
③. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
④. 重复步骤③直到某一指针到达序列尾
⑤. 将另一序列剩下的所有元素直接复制到合并序列尾

3、代码实现

归并排序其实要做两件事:

  • 分解:将序列每次折半拆分
  • 合并:将划分后的序列段两两排序合并

因此,归并排序实际上就是两个操作,拆分+合并

如何合并?

L[first…mid]为第一段,L[mid+1…last]为第二段,并且两端已经有序,现在我们要将两端合成达到L[first…last]并且也有序。

首先依次从第一段与第二段中取出元素比较,将较小的元素赋值给temp[]
重复执行上一步,当某一段赋值结束,则将另一段剩下的元素赋值给temp[]
此时将temp[]中的元素复制给L[],则得到的L[first…last]有序

如何分解?

在这里,我们采用递归的方法,首先将待排序列分成A,B两组;然后重复对A、B序列
分组;直到分组后组内只有一个元素,此时我们认为组内所有元素有序,则分组结束。

这里我写了递归算法如下:

/**
 * 归并排序(递归)
 *
 * ①. 将序列每相邻两个数字进行归并操作,形成 floor(n/2)个序列,排序后每个序列包含两个元素;
 * ②. 将上述序列再次归并,形成 floor(n/4)个序列,每个序列包含四个元素;
 * ③. 重复步骤②,直到所有元素排序完毕。
 * @param arr    待排序数组
 */
public static int[] mergingSort(int[] arr){
 if(arr.length <= 1) return arr;

 int num = arr.length >> 1;
 int[] leftArr = Arrays.copyOfRange(arr, 0, num);
 int[] rightArr = Arrays.copyOfRange(arr, num, arr.length);
 System.out.println("split two array: " + Arrays.toString(leftArr) + " And " + Arrays.toString(rightArr));
 return mergeTwoArray(mergingSort(leftArr), mergingSort(rightArr));      //不断拆分为最小单元,再排序合并
}

private static int[] mergeTwoArray(int[] arr1, int[] arr2){
 int i = 0, j = 0, k = 0;
 int[] result = new int[arr1.length + arr2.length];  //申请额外的空间存储合并之后的数组
 while(i < arr1.length && j < arr2.length){      //选取两个序列中的较小值放入新数组
 if(arr1[i] <= arr2[j]){
 result[k++] = arr1[i++];
 }else{
 result[k++] = arr2[j++];
 }
 }
 while(i < arr1.length){     //序列1中多余的元素移入新数组
 result[k++] = arr1[i++];
 }
 while(j < arr2.length){     //序列2中多余的元素移入新数组
 result[k++] = arr2[j++];
 }
 System.out.println("Merging: " + Arrays.toString(result));
 return result;
}

由上, 长度为n的数组, 最终会调用mergeSort函数2n-1次。通过自上而下的递归实现的归并排序, 将存在堆栈溢出的风险。

以下是归并排序算法复杂度:

平均时间复杂度 最好情况 最坏情况 空间复杂度
O(nlog₂n) O(nlog₂n) O(nlog₂n) O(n)

从效率上看,归并排序可算是排序算法中的”佼佼者”. 假设数组长度为n,那么拆分数组共需logn,, 又每步都是一个普通的合并子数组的过程, 时间复杂度为O(n), 故其综合时间复杂度为O(nlogn)。另一方面, 归并排序多次递归过程中拆分的子数组需要保存在内存空间, 其空间复杂度为O(n)。

和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。

赞(0) 打赏

如未加特殊说明,此网站文章均为原创,转载必须注明出处。Java 技术驿站 » Java 排序算法 — 归并排序
分享到: 更多 (0)

评论 抢沙发

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址

关注【Java 技术驿站】公众号,每天早上 8:10 为你推送一篇技术文章

扫描二维码关注我!


关注【Java 技术驿站】公众号 回复 “VIP”,获取 VIP 地址永久关闭弹出窗口

免费获取资源

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

微信扫一扫打赏